
Evolution of
Databases

An easy explanation of how databases work, and
terminology used by database developers

Presented by
Dignity Computer Solutions

October 2017

Introduction

This presentation looks at how databases have evolved
from 1978 to 2018. It takes you from how data used to
be stored/accessed, to the present day methods of
allowing for seamless data exchange and interoperability

A Child’s Game

In 1978, when I was 7 years old, I remember finding
out that I could store information on my computer.

My dad said that my report card was printed by the
school computer, so I decided to make a program
which would store not only my grades, but the grades
that I thought all of my stuffed toys would get.

Flat Files

• In the 70s and 80s, data used to be stored as text files
(the kind of file you can open up in Notepad)

• Each piece of data would be separated by commas
and quotation marks. These kinds of files were
called Comma Separated Value Files (CSV Files)

• Here’s an example of how my first database might
have looked like:

Example of a CSV File

“NAME”; “ADDRESS”;“SUBJECT”; “GRADE”
“Raja Lamba”; “123 Main Street”;“Math”; “A”
“Raja Lamba”; “123 Main Street”;“Language Arts”; “A”
“Raja Lamba”; “123 Main Street”;“Social Studies”; “A”
“Gerald Giraffe”; “777 Too Tall Ave”;“Math”; “D”
“Gerald Giraffe”; “777 Too Tall Ave”;“Language Arts”; “C”
“Gerald Giraffe”; “777 Too Tall Ave”;“Social Studies”; “A”
“Franklin Turtle”; “420 Fast Lane”;“Math”; “A”
“Franklin Turtle”; “420 Fast Lane”;“Language Arts”; “B”
“Franklin Turtle”; “420 Fast Lane”;“Social Studies”; “C”

Tables, Records, and Fields

• The previous slide shows an example of a TABLE
of data. A table has rows (each line), and columns
(each value).

• Each row is called a RECORD. Here are 2 records
from the previous slide

• Each column is called a FIELD. The fields in the
previous slide are Name, Address, Subject, and
Grade

“Raja Lamba”; “123 Main Street”;“Social Studies”; “A”
“Gerald Giraffe”; “777 Too Tall Ave”;“Math”; “D”

Back End and Front End

• Here’s some terminology which us database guys
always use, but it’s actually really simple

• In our example, the table of name, address, subject,
and grade would be our BACK END. The Back
End just stores information

• The program that I wrote which would ask how you
wanted to sort it, and displayed it sorted by your
choice (something 7 year old me was very proud of)
would be our FRONT END

What’s Wrong With Flat Files?

• So in our Example of a CSV File, you’ll notice how much
information is duplicated. What if we wanted to change
Franklin Turtle’s address to 999 McDavid Street? We
would have to change it in 3 places.

• The Front End was hard to program because many lines
of code were required to sort Flat Files (nothing was
indexed)

• The Back End and Front End were both stored on the
same computer, and could only be accessed by 1 person at
one time

Relational Databases

• In the 1990s, a better way of storing data was
engineered. Instead of having 1 big file, with many
many columns, Relational Databases would group
relevant information together into separate
tables. Each table could then relate to each other
through identity values.

• Here’s an example of how my CSV File would look
like as a Relational Database split into 2 tables.

Relational Database: Example

STUDENT TABLE:

“StudentID”; “Name”; “Address”
“1”; “Raja Lamba”; “123 Main Street”
“2”; “Gerald Giraffe”; “777 Too Tall Ave”
“3”; “Franklin Turtle”; “999 McDavid Street”

GRADES TABLE:

“StudentID”; “Subject”; “Grade”
“1”; “Math”; “A”
“1”; “Language Arts”; “A”
“1”; “Social Studies”; “A”
“2”; “Math”; “D”
“2”; “Language Arts”; “C”
“2”; “Social Studies”; “A”
“3”; “Math”; “A”
“3”; “Language Arts”; “B”
“3”; “Social Studies”; “C”

Notice how I only had to change Franklins
address in 1 spot!

The Student Table and Grades Table are related
to each other by the StudentID KEY.

StudentID is the primary identifier, or
PRIMARY KEY in the Student Table

Relational Database Revolution

• The Relational Database Back End architecture was
so successful that it is still being used today. No
more text files or CSV files except for data exchange.

• 2 Common Relational Database Back Ends include
SQL Server and Oracle

• With this new revolution in how the Back End was
handled, a new way of setting up Front Ends (the
user interface) was also developed

Client / Server Databases

• So far, the example that we were using had the Back End
(data) and Front End (user interface) on one computer
which meant that only 1 person could access the data at
one time.

• A better way to set up databases was to have 1 central
place for the data (usually on a network server) and many
different computers accessing the same data at the same
time. This is called a Client / Server Database

• An example of this would be a Microsoft Access Front
End Client with a SQL Back End Server.

Sharing Your Data Off-Site

• Client Server databases work great if you only have 1 network. But
what if you need to access the data off-site?

• One way is to set up a Web Based Front End which uses your
browser (Internet Explorer, Google Chrome etc) which can also
access your SQL Server Back End.

• This method of setting up 1 Back End, and different types of
Front Ends (example Microsoft Access AND Web Browser) to
access the same data is called an N-Tier Database

• Another way to access your database from off site is by using
Remote Desktop Connection. This allows you to see your
computer off-site and no data is ever transmitted through your web
browser. Many feel that this is more easy to use, and that web
based front ends should only be used for e-commerce

N-Tier Databases

INTERNAL NETWORK /
DATA CENTER

BACK END
(SQL Server)

Computer 2
Computer 3

Remote Desktop Server

Computer 1
Computer 5

Computer 4

Smart Phone 1

Smart Phone 2

OUTSIDE WORLD

Remote Desktop 2
(MAC)

Remote Desktop 1
(PC)

F
I
R
E
W
A
L
L

FIREWALL • Computer 1, 2, 3 use Microsoft Access
• Computer 4 and 5 use web browser
• Smart Phone 1 uses web browser
• Smart Phone 2 uses iPhone App

Data Exchange

• So far our examples have always been using 1 database.
What if you want to exchange data between databases?
Data can be exported as a CSV File and imported into
another database, but there must be a better way.

• XML is a technology standard which allows for data
mapping between 2 databases, as well as scheduled
synchronization between 2 databases.

• XML dealt with data exchange, but couldn’t access things
like database validation rules etc. Web Service
Technology allows for seamless data integration between
multiple back end databases.

Web Service Technology

• If a Back End uses Web Service Technology, it allows different
Front Ends to access it by allowing the Front End to access it’s
functions via a secure certificate.

• An example would be Alberta Education who provides 1
central Web Service Back End (Their system is called PASI) and
different databases can access it, add records, edit records etc.
Whether it’s being used by a Head Start Program, or an
Elementary, or Post Secondary institution etc, each institution
can use their own database to access the PASI core without
data export or import.

• Web Service Technology uses Secure Certificates which are not
issued to the general public, thus making it more secure.

CANFIT
(Customized Agency Networked Family Information Tracker)

• CANFIT was developed in 2001 by Dignity Computer Solutions as an N-
Tier Relational Database, and is now being set up as a master database
using Web Service Technology.

• CANFIT is hosted at a secure data center facility in Edmonton. Features
of the data center include redundant points of failure, off-site backups, and
99% up time with redundant Shaw, Telus, and Satellite connections. Local
Network versions of CANFIT are also in use.

• Over 500 users currently use CANFIT across Canada.
• Millions of records have been entered into CANFIT
• Dignity Computer Solutions has passed Federal Security Clearance for

some CANFIT Implementations.
• Here’s an example of what we are currently setting up for Homeward Trust

SQL SERVER for
Homeward Trust

At Secure Data Center.
CANFIT backend storing

relational tables

ETOFYI DBHIFIS

- Microsoft Access Front End
- Report Generation  Excel Charts
- User Friendly
- Links easily to all DBs

- Web Browser Front End

Other 3rd Party
Front Ends

Any database following
Homeward Trust
business rules

Direct Link via secure
Remote Desktop

Links via
Web Service Link via

Live OfficeLink via
Web Service?
XML?

Link via
Web Service

Link via
Web Service

Customized Solution

• So what’s the most important thing that I’ve learned
since the age of 7? COMMUNICATION. None of
this technology will make a difference without good
designers and project management to handle
expectations.

• What can’t CANFIT do? Nothing. If we haven’t
developed it, we can. The better question is When
can CANFIT do it?

Thank You!

Thank you for listening to my story. I hope that me
and my team can have the opportunity to help tell your
unique story over the coming years.

	Evolution of Databases
	Introduction
	A Child’s Game
	Flat Files
	Example of a CSV File
	Tables, Records, and Fields
	Back End and Front End
	What’s Wrong With Flat Files?
	Relational Databases
	Relational Database: Example
	Relational Database Revolution
	Client / Server Databases
	Sharing Your Data Off-Site
	N-Tier Databases
	Data Exchange
	Web Service Technology
	CANFIT�(Customized Agency Networked Family Information Tracker)
	Slide Number 18
	Customized Solution
	Thank You!

